Skip Navigation Website Accessibility
  Unit 7, 89 Erindale Road, Balcatta, Perth, Western Australia, 6021

About Enriched Air Nitrox


Nitrox refers to any gas mixture composed (excluding trace gases) of nitrogen and oxygen; this includes normal air which is approximately 79% nitrogen and 21% oxygen (although around 1% is actually other gases). The most common use of nitrox mixtures containing higher than normal levels of oxygen is in SCUBA diving where the reduced percentage of nitrogen is advantageous in reducing nitrogen take up in the body’s tissues and so extending the possible dive time and/or reducing the risk of decompression sickness (also known as the bends).


Nitrox is mainly used in scuba diving to reduce the proportion of nitrogen in the breathing gas mixture. Reducing the proportion of nitrogen by increasing the proportion of oxygen reduces the risk of decompression sickness, allowing extended dive times without increasing the need for decompression stops. Nitrox is not a safer gas than compressed air in all respects: although its use reduces the risk of decompression sickness, it increases the risk of oxygen toxicity and fire, which are further discussed below.

It is commonly believed that breathing nitrox can reduce the effects of nitrogen narcosis, but this has not been fully studied. In fact, there is some suggestion that oxygen may also have some narcotic properties under pressure; thus one should not expect a reduction in narcotic effects due only to the use of nitrox. In any case, the issue rarely arises, since depths which begin to induce narcosis in sensitive divers (> 35-40 m) are beyond the maximal operating depth of standard nitrox mixes anyway.

There is anecdotal evidence that the use of nitrox reduces post-dive fatigue, particularly in older divers; however the only known double-blind study to test this found no statistically significant reduction in reported fatigue. There has, however, been some suggestion that post dive fatigue is due to sub-clinical decompression sickness (DCS) (i.e. micro bubbles in the blood insufficient to cause symptoms of DCS); the fact that the study mentioned was conducted in a dry chamber with an ideal decompression profile may have been sufficient to reduce sub-clinical DCS and prevent fatigue in both nitrox and air divers.

Further studies with a number of different dive profiles, and also different levels of exertion, would be necessary to fully investigate this issue. For example, there is much better scientific evidence that breathing high-oxygen gases increase exercise tolerance, during aerobic exertion. Though even moderate exertion while breathing from the regulator is a relatively uncommon occurrence in scuba, as divers usually try to minimize it in order to conserve gas, episodes of exertion while regulator-breathing do occasionally occur in sport diving. Examples are surface-swimming a distance to a boat or beach after surfacing, where residual “safety” cylinder gas is often used freely, since the remainder will be wasted anyway when the dive is completed. It is possible that these so-far un-studied situations have contributed to some of the positive reputation of nitrox.


The two most common recreational diving nitrox mixes are 32% and 36%, which have maximum operating depths of about 34 meters / 110 feet and 29 meters / 95 feet respectively when limited to a maximum partial pressure of oxygen of 1.4 bar.

Nitrox with more than 40% oxygen is uncommon within recreational diving. There are two main reasons for this: the first is that all pieces of diving equipment that come into contact with mixes containing higher proportions of oxygen, particularly at high pressure, need special cleaning and servicing to reduce the risk of fire. The second reason is that richer mixes extend the time the diver can stay underwater without needing decompression stops far further than the duration of typical diving cylinder. For example, based on the PADI nitrox recommendations, the maximum operating depth for Nitrox45 would be 21 meters / 70 feet and the maximum dive time available at this depth even with Nitrox36 is nearly 1 hour 15 minutes: a diver with a breathing rate of 20 liters per minute using twin 10 litre, 230 bar (about double 85 cu. ft.) cylinders would have completely emptied the cylinders after 1 hour 14 minutes at this depth.

Nitrox, usually containing 50% to 80% oxygen, as well as pure oxygen, is common in technical diving as a decompression gas, which eliminates inert gases, such as nitrogen and helium, from the tissues more quickly than leaner oxygen mixtures eliminate them.

In deep open circuit technical diving, where hypoxic gases are breathed during the bottom portion of the dive, a Nitrox mix with 50% or less oxygen called a “travel mix” is sometimes breathed during the beginning of the descent in order to avoid hypoxia. Normally, however, the most oxygen-lean of the diver’s decompression gases would be used for this purpose, since descent time spent reaching a depth where bottom mix is no longer hypoxic is normally small, and the distance between this depth and the MOD of any nitrox decompression gas is likely to be very short, if it occurs at all.


Any cylinder containing any blend of gas other than the standard air content is required by the dive community to be clearly marked.

The standard nitrox cylinder is yellow in color and marked with a green band around the shoulder of the tank, with “Nitrox” or “Enriched air” marked in white or yellow letters inside. Tanks of any other color are generally marked with six inch band around the shoulder, with a one inch green band on the top and bottom, with four inches of green in the middle. This green band will also have the designation of “NITROX” or something similar inside, in yellow or green letters.

Every nitrox cylinder should also have a sticker stating whether or not the cylinder is oxygen clean and suitable for partial pressure blending. Any oxygen clean cylinder may have any mix up to 100% oxygen inside. If by some accident an oxygen clean cylinder is filled at a station which does not supply gas to oxygen-clean standards it is then considered contaminated and must be re cleaned before a gas containing more than 40% oxygen may again be added. Cylinders marked as not-oxygen clean may only be filled with enriched oxygen mixtures from membrane or stick blending systems where the gas is mixed before being added to the cylinder.

Finally, all nitrox cylinders should have a tag that, at minimum, states the oxygen content of the cylinder, the date it was blended, the gas blender’s name, and the maximum operating depth. Other requirements may be made as to what is marked on the cylinder, but these markings are considered standard and safe by the diving community, and any cylinders lacking these markings should be considered possibly unsafe.


Diving and handling nitrox raises a number of potentially fatal dangers due to the high partial pressure of oxygen (ppO2). Nitrox is not a deep-diving gas mixture due to the increased proportion of oxygen in Nitrox: oxygen becomes toxic when breathed at high pressure. For example, the maximum operating depth of nitrox with 36% oxygen, a popular recreational diving mix, is generally around 30 metres/100 feet. The exact value of the maximum allowed ppO2 and maximum operating depth varies depending on factors such as the training agency, the type of dive, the breathing equipment and the level of surface support, with professional divers sometimes being allowed to breath higher ppO2s than those recommended to recreational divers.

To dive safely with nitrox, the diver must learn good buoyancy control, a vital part of scuba diving in its own right, and a disciplined approach to preparing, planning and executing a dive to ensure that the ppO2 is known, and the maximum operating depth is not exceeded. Reputable dive operators and gas blenders insist on the diver having recognized nitrox training (which appears as an extra notation on a certification card) before selling nitrox to divers.

Some training agencies teach the use of two depth limits to protect against oxygen toxicity. The shallower depth is called the “maximum operating depth” and is reached when the partial pressure of oxygen in the breathing gas reaches 1.4 bar. The second deeper depth, called the “contingency depth”, is reached when the partial pressure reaches 1.6 bar. Diving at or beyond this level exposes the diver to the risk of central nervous system (CNS) oxygen toxicity. This can be extremely dangerous since its onset is often without warning and can lead to drowning, as the regulator is spat out during convulsions which occur in conjunction with sudden unconsciousness (general seizure induced by oxygen toxicity).


Diving Cylinders are usually filled with nitrox by a gas blender technique such as partial pressure blending or premix decanting (in which a nitrox mix is supplied to the filler in pressurized larger cylinders). A few facilities have begun to fill cylinders with air which has been enriched with oxygen by a pre-mixing process, so that it is pressurized as nitrox for the first time in the diving cylinder. The pre-mixing is accomplished either by a membrane system which removes nitrogen from the air during compression or by a ‘stick’ blending technique where pure oxygen is mixed with air in a baffled chamber attached to the compressor intake.

With the use of pure oxygen during “partial pressure blending” (where pure oxygen is added to the nearly empty dive cylinder to 300-500 p.s.i. (20-35 bar), from a large pure oxygen cylinder before air is added, by compressor) there is an especially increased risk of fire. Partial blending using pure oxygen is often used to provide nitrox for multiple dives on live-aboard dive boats, but it is also used in some smaller diver shops.

However, any gas which contains a significantly larger percentage of oxygen than air is a fire hazard. Furthermore, such gases can also react with hydrocarbons or incorrect lubricants inside a dive cylinder to produce carbon monoxide, even if a recognized fire does not happen. At present, there is some discussion over whether or not mixtures of gas which contain less than 40% oxygen may sometimes be exempt from oxygen clean standards. Some of the controversy comes from a single U.S. regulation intended for commercial divers (not recreational divers) years ago. However, the U.S. Compressed Gas Association (CGA) and two international nitrox teaching agencies (IANTD and ANDI) now support the standard that any gas containing more than 23.5% oxygen should be treated as nitrox (which is to say, no differently from pure oxygen) for purposes of oxygen cleanliness and oxygen compatibility (i.e., oxygen “serviceability”). However, the largest training agency – PADI – is still teaching that pre-mixed nitrox (i.e. nitrox which is mixed before being put into the cylinder) below 40% oxygen does not require a specially cleaned cylinder or other equipment. Most nitrox fill stations which supply pre-mixed nitrox will fill non-oxygen clean cylinders with mixtures below 40%. For a history of this controversy see [3].


In 1959 the United States Navy (USN) documented enriched oxygen gas procedures for the military use of what we today call nitrox, in the USN Diving Manual.

In 1970, Dr Morgan Wells, the former Director of the National Oceanographic and Atmospheric Administration Diving Center began instituting diving procedures for oxygen-enriched air. He also developed a process for mixing oxygen and air which he called a continuous blending system. For many years Dr. Wells’ invention was the only practical alternative to partial pressure blending. In 1979 NOAA published Wells’ procedures for the scientific use of Nitrox in the NOAA Diving Manual.

In 1985 Dick Rutkowski, a former NOAA diving safety officer, formed IAND (International Association of Nitrox Divers) and began teaching nitrox use for recreational diving. This was considered heresy by some, and met with heavy skepticism by the diving community. In 1992 the name was changed to the International Association of Nitrox and Technical Divers the T being added when the European Association of Technical Divers (EATD) merged with IAND. In the early 1990’s, the agencies teaching nitrox were not the main scuba agencies. New organizations, including Ed Betts’ (American Nitrox Divers International, which invented the term “Safe Air” for marketing purposes), and Bret Gilliam’sTDI (Technical Divers International) gave scientific credence to nitrox.

Meanwhile, diving stores were finding a purely economic reason to offer nitrox: not only was an entire new course and certification needed to use it, but instead of cheap or free tank fills with compressed air, dive shops found they could charge premium amounts of money for custom-gas blending of nitrox to their ordinary moderately experienced divers. With the new dive computers which could be programmed to allow for the longer bottom-times and shorter residual nitrogen times which nitrox gave, the incentive for the sport diver to use the gas increased. An intersection of economics and scientific validity had occurred. However, in the meantime during the early 90’s, a number of feelings were hurt.

In 1996 the conservative Professional Association of Diving Instructors PADI finally announced full educational support for nitrox. While other main line scuba organizations had announced their support of nitrox earlier, it was PADI’s endorsement that put nitrox over the top as a standard sport diving “option.”